
Problem E1. The magnetic permeability of water
(10 points)

Part A. Qualitative shape of the water surface (1 points)

Observing reflections from the water surface (in particular,

those of straight lines, such as the edge of a sheet of paper),

it is easy to see that the profile has one minimum and has

a relatively flat bottom, ie. the correct answer is “Option D”.

This profile implies that water is pushed away from the magnet,

which means µ < 1 (recall that ferromagnets with µ > 1 are

pulled).

Part B. Exact shape of the water surface (7 points)

i. (1.5 pts) The height of the spot on the screen y is tabulated

below as a function of the horizontal position x of the caliper.

Note that the values of y in millimetres can be rounded to in-

tegers (this series of measurements aimed as high as possible

precision).

x (mm) 10 15 20 25 30 32 34 36

y (mm) 11.5 15.6 19.8 24.3 30.2 33.2 37.2 40.5

x (mm) 38 40 42 44 46 48 50 52

y (mm) 42.2 41.4 40.3 40.3 40.8 42 43.2 44.4

x (mm) 54 56 58 60 62 64 66 68

y (mm) 45.3 45.8 45.4 44.4 43.6 46.2 50 53.6

x (mm) 70 72 74 76 78 80 85 90

y (mm) 56.7 59.5 61.6 63.5 65.3 67 70.9 74.9

ii. (0.7 pts)

iii. (0.5 pts) If the water surface were flat, the dependence of

x on y would be linear, and the cotangent of the incidence angle

would be given by its tangent, cot α0 = ∆y
∆x

, where ∆x is a ho-

rizontal displacement of the pointer, and ∆y — the respective

displacement of the spot height. For the extreme positions of

the pointer, the beam hits the water surface so far from the

magnet that there, the surface is essentially unperturbed; con-

necting the respective points on the graph, we obtain a line

corresponding to a flat water surface — the red line. Using

these two extreme data points we can also easily calculate the

incidence angle α0 = arctan 90−10

74.9−11.5
≈ 52◦.

iv. (0.7 pts) The red line on the graph is given by equation

yr = y0 +(x−x0) cot α0; the mismatch y −yr between the blue

data points and the red line is due to the inclination of the

water surface. The inclination of the reflected beam is 2β —

twice as large as the inclination of the reflecting surface. The

length of the reflected beam is (L0 + x − x0)/ sin α0 and thus

the tangential displacement of the beam in the neighbourhood

of the screen is t = 2βL0/ sin α0; here we have assumed that

β ≪ 1. This gives rise to a vertical displacement of the spot on

the screen equal to y − yr = t/ sin α0 = 2βL0/ sin2 α0. From

here we can express

tan β ≈ β ≈
sin2 α0

2
·

y − y0 − (x − x0) cot α0

L0 + x − x0

.

v. (1.3 pts) For faster calculations, y −y0 −(x−x0) cot α0 can

be read from the previous graph as the distance between red

and blue line; one can also precalculate 1

2
sin2 α0 ≈ 0.31. The

calculations lead to the following table (with z = tan β · 105 ;

as mentioned above, during the competition, lesser precision

with two significant numbers is sufficient).

x (mm) 10 15 20 25 30 32 34 36

z 0 10 27 66 204 303 473 591

x (mm) 38 40 42 44 46 48 50 52

z 597 428 239 128 53 26 0 -26

x (mm) 54 56 58 60 62 64 66 68

z -72 -145 -278 -449 -606 -536 -388 -254

x (mm) 70 72 74 76 78 80 85 90

z -154 -74 -40 -20 -6 2 -2 0

vi. (1.3 pts) The water height can be obtained as the integral

h =
∫

tan βdx. Thus, we calculate the water height row-by-

row, by adding to the height in the previous row the product

of the horizontal displacement xi+1 −xi with the average slope
1

2
(tan βi+1 + tan βi).

x (mm) 10 15 20 25 30 32 34 36

−h (µm) 0 0 1 4 10 15 23 34

x (mm) 38 40 42 44 46 48 50 52

−h (µm) 46 56 63 66 68 69 69 69

x (mm) 54 56 58 60 62 64 66 68

−h (µm) 68 66 61 54 44 32 23 17

x (mm) 70 72 74 76 78 80 85 90

−h (µm) 12 10 9 8 8 8 8 8

Note that the water level height at the end of the table should

be also 0 (this corresponds also to an unperturbed region); the

non-zero result is explained by the measurement uncertainties.

One can improve the result by subtracting from h a linear trend

8 µm ·
x−10 mm

80 mm
.
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vii. (1 pt) Part C. Magnetic permeability (2 points)

Water surface takes an equipotential shape; for a unit volume of

water, the potential energy associated with the magnetic inter-

action is B2

2µ0

(µ−1−1) ≈ B2 1−µ
2µ0

; the potential energy associated

with the Earth’s gravity is ρgh. At the water surface, the sum

of those two needs to be constant; for a point at unperturbed

surface, this expression equals to zero, so B2 µ−1

2µ0

+ ρgh = 0

and hence, µ − 1 = 2µ0ρgh/B2. Here, h = 64 µm stands for

the depth of the water surface at the axis of the magnet; note

that we have compensated the cumulative error as described at

the end of the previous task and obtained h as the difference

between the the maximal depth (68 µm) and the half-depth at

the right-hand-side of the graph (4 µm). Putting in the num-

bers, we obtain µ − 1 = −7.8 × 10−6 .
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Problem E2. Nonlinear Black Box (10 points)
Part A. Circuit without inductance (7 points)

It is possible to make all the measurements needed for this

problem with a single circuit as shown in the figure. While the

current source is switched on, we are charging the capacitor in

the black box, until the current I(Vmax) through the nonlinear

element equals to the output current I0 of the current source.

Vmax = 540±40mVs varies from one experimental setup to an-

other. When the current source is switched off or disconnected,

the capacitor will discharge through the nonlinear element.

Multimeter

Current source

IN OUT GND

+−
Switch
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Black box
Switch
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IX X

i. (1 pt) During charging of the capacitor from V = 0 to

V = Vmax we note that the output of the current source is con-

stant (I0 = 6.0 mA) close to the precision of the multimeter.

ii. (1.2 pts) Using the definition of differential capacitance,

we can calculate the current through the capacitor in the black

box from the time derivative of the voltage on the black box.

Ic =
dQ

dt
=

dQ

dV

dV

dt
= C(V )V̇

There are several ways to determine the capacitance used in

the black box based on chosen voltage.

• When the voltage on the black box is close to zero, the

current through the nonlinear element is also close to

zero, because I(V = 0) = 0. After switching the current

source on, most of the input current I0 will at first go

through the capacitor.

C0 = I0/V̇↑(V = 0)

This can be measured more precisely after first reversing

the polarity of the current source and charging the capa-

citor backwards, because the multimeter does not display

derivatives when they change sharply (as in few moments

after switching the current source on).

Example measurements taken this way follow.

V↑(0) (mV/s) 3.51 3.32 3.55

C0 (F) 1.71 1.81 1.69

C0 = 1.74 F

• When the voltage on the black box is Vmax, the current

through the nonlinear element is I0. Switching the cur-

rent source off, we will have the capacitor discharging

with the same current.

C0 = −I0/V̇↓(V = Vmax)

• We can also measure the capacitance for any intermediate

voltage as in A-iv.

iii. (2.4 pts) If we neglect the nonlinearity of the capacitor,

there are (at least) two ways to obtain the current–voltage char-

acteristic of the nonlinear element in the black box.

• Applying Kirchhoff’s I law to the charging capacitor,

I(V ) = Ic − C0V̇↑(V ).

An I(V ) characteristic obtained by charging the capacitor

is shown on the following figure.

• Applying Kirchhoff I law to the discharging capacitor,

I(V ) = −C0V̇↓(V ).
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iv. (2.4 pts) In order to obtain the differential capacitance,

we solve a system of linear equations by eliminating I(V ):

{

I0 = V̇↑C(V ) + I(V )

I(V ) = −V̇↓C(V );
=⇒ C(V ) =

I0

V̇↑ − V̇↓

.

Therefore we need to take measurements during both charging

and discharging the capacitor in the black box at the same

voltages. A graph of measurement results follows.

— page 3 of 4 —



0 0.1 0.2 0.3 0.4 0.5
1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

 V (V)

 C
 (

F
)

Part B. Circuit with inductance (3 points)

Measuring and plotting the current–voltage characteristic of

the nonlinear element in the same way as in part A-iii, we

obtain a graph that differs only in the negative differential res-

istance region (the region where, when we look at small-signal

oscillations, the nonlinear element behaves as a negative-valued

Ohmic resistance). After enabling the inductance we have a

LC circuit whose oscillations are amplified (instead of being

dampened) by the negative differential resistance. Because the

resonant frequency ω =
√

1

LCp

∼ 30 MHz (with Cp being the

parasitic capacitance) is high, we actually measure the average

current through the nonlinear element, while the real current

oscillates all over the region of negative differential resistance.
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